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SUMMARY 

Three-dimensional finite-element analyses of middle-crack tension (M-T) 

and bend specimens subjected to mode I loadings were performed to study the 

stress singularity along the crack front. 

20-node isoparametric elements with collapsed, non-singular elements at the 

crack front. The displacements and stresses from the analysis were used to 

estimate the power of singularities using a log-log regression analysis 

along the crack front. The analyses showed that finite-sized cracked bodies 

have two singular stress fields. 

The specimen was modeled using 

The near-field singular stress has the 

+ Do(B,4) R x u .  The first term is the cylindrical - 1 /2  form u - Co(O,z) r 
singularity with the power -1/2 and is dominant over the middle 96% (for 

Poisson's ratio = 0.3) of the crack front and becomes nearly zero at the 

free surface. 

vertex point located at the intersection of the crack front and the free 

surface. The second singularity is dominant at the free surface and becomes 

nearly zero away from the boundary layer. 

layer depends on Poisson's ratio of the material and is independent of the 

specimen type. The thickness of the boundary layer was about 0%, 2%, 4 % ,  

and 5% of the total specimen thickness for Poisson's ratio of 0 . 0 ,  0.3, 0 . 4 ,  

and 0 . 4 5 ,  respectively. 

The second singularity is a vertex singularity with the 

The thickness of the boundary 

Because there are two singular stress fields near the free surface, the 

strain-energy-release rate (G) is an appropriate parameter to measure the 

severity of the crack front. The G-distribution for M-T and bend 

specimens were different. 
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INTRODUCTION 

A crack front intersecting the free surface in a three-dimensional (3D) 

body has been a subject of  interest for the last two decades [ l - 1 2 1 .  

Hartranft and Sih [2] and Sih [3] considered a through-the-thickness crack 

intersecting normal to the free surfaces in a finite size plate. They 

argued that the classical two-dimensional (2D) singular (square root) stress 

and displacement fields are not valid at the free surface because such a 

field would yield a zero stress intensity factor and violate the physical 

deformation characteristics of the body, namely the nonzero deformation at 

the free surface. They defined a boundary-layer region (a region where the 

stress field is different from classical square-root singularity) of 

thickness /3 near the free surface by an empirical equation p = t/(4 + 

16t/a), in which the square-root singularity is not valid. In this 

equation, t is the thickness of the plate and 2a is the crack length. 

In 1977, Benthem [ 4 , 5 ]  showed that if separation of variables is valid at 

the intersection of the crack front and the free surface then a vertex 

singularity exists. 

classical value of -0.5. 

a semi-infinite half-space subjected to symmetric loading. 

near-field stresses by a vertex singularity as 

displacement as v = F(0,4)RXv. 

spherical coordinates, R, 8 ,  and 4 ,  with the intersection of the crack 

plane and the free surface as the origin. Benthem showed that the value of 

X u  varies between -0.5 and -0.332 for Poisson's ratios between 0.0 and 0.5, 

respectively. About the same time, Bazant and Estenssoro [ 6 , 7 ]  presented 

identical results using a 3D finite-element analysis. 

The power of the singularity is weaker than the 

He analyzed a problem of a quarter-plane crack in 

He expressed the 

u = E(0,4)RXU and the 

Both stress and displacement are in 

. 

. 
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Later efforts, both analytical [ a ]  and experimental [SI, focused on 

confirming results obtained by Bentnem [ 4 , 5 ]  and Bazant and Estenssoro 

[ 6 , 7 ] .  Smith and his co-workcrs 19-11]  used s t r e s s  fcceziny,  p1iotocl:ist i r -  

esperiments to measure the power of the singularity along the crack front. 

They assumed that the near-field stresses and displacements are represented 

by an extended classical 2D singularity equation. 

singularity is referred to as a cylindrical singularity.) By invoking the 

separation of variables assumprion, they calculated the stress singularity 

from the power of the displacement field equation 

predicted free-surface singularity for a Poisson's ratio v of 0 .40  agreed 

reasonably well with Benthem's results. Furthermore, the measured power of 

the singularity changed monotonically from -0.5 at the interior to -0.37 at 

the free surface. The transition region near the free surface was about 20% 

of the specimen thickness. 

(In this paper such a 

v = BorXv. Their 

One common assumption in all the above studies is that the space 

variables are separable in the near-field stress and displacement equations. 

The validity of this assumption itself is not known. Furthermore, the 

variation of A, and A, within the boundary-layer region has not been 

analytically investigated for finite-size cracked bodies. Recently, 

Shivakumar and Raju [12], through a superposition analysis, showed that for 

a middle cracked tension (M-T) specimen, the near-field stress has two 

singularities. 

co r -1'2 + 

singularity and the second term is probably Benthem's vertex singularity, 

The objectives of the present paper are to extend the work reported in 

reference 12 to various specimen configurations, to use different Poisson's 

The form of  the near-field stress is given by 

Do RAo, where the first term is the classical square-root 
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ratios, to evaluate the thickness of the boundary layer region, and, 

finally, to evaluate the strain-energy-release rate at the intersection of 

the crack front and the free surface. In the literature [ 6 - 8 1 ,  the drop in 

the strain-energy-release rate or stress-intensity factor the near-free 

surface region has been attributed to the deviation of near-field stress 

from the classical square-root singularity. 

will also be evaluated. 

The validity of this hypothesis 

Middle-crack tension (M-T) and bend specimens, shown in Figure 1, with 

homogeneous, isotropic, and elastic properties were considered. Finite- 

element analyses using 20-node isoparametric elements were performed. The 

M-T specimen was analyzed with several values of Poisson's ratios and two 

values of thicknesses. In each case, the displacement and stress fields 

around the crack front were evaluated. The power of the singularity of the 

mode I stress field was evaluated from the finite-element results using the 

log-log least square procedure in reference 12. The power of the 

singularity at the free surface is compared with Benthem [ 4 , 5 ]  results for a 

quarter plane crack in a semi-infinite solid. The effect of Poisson's ratio 

on the distribution of the power of the singularity in the boundary layer 

region is assessed. In this paper, some of the analysis and results 

presented in reference 12 are repeated for the purpose of completeness and 

clar i ty . 

Because the stress-intensity factor (K) is based on an assumed square- 

root singularity, it may not be a valid parameter to measure the severity of 

a crack front in the boundary-layer region where the power of the 

singularity is unknown. On the other haiid, thv strain-energy-release rate 

( c )  , w h i c h  requires no such  rissumption, i s  an <lpproprinte alternate fract\ l i-c,  



parameter. Therefore, the strain-energy-release rate is used to 

characterize the severity of the crack front. While several methods exist 

to compute G, a simple and an accurate method based on the virtual crack 

closure technique (VCCT) developed by Shivakumar et al. [13] is used. The 

G-distribution for M-T and bend specimens were compared with each other. 

The boundary layer region, defined by the non-square-root stress 

singularity, is compared with the region over which G has a gradient for 

different specimen configurations. 
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NOKENCIATURE 

crack length, m 

Young's modulus, GPa 

strain-energy-release rate, J/m 2 

plane-strain, strain-energy-release rate, J/m 2 

half-height of specimen, m 

load per unit length, N/mm 

spherical coordinate system 

cylindrical coordinate system 

remote tension stress, N/mm2 

specimen thickness, m 

ith layer thickness, m 

u,v,w displacements in x-, y-, and z-directions, m 

X,Y,Z Cartesian coordinates, m 

W half-width of the specimen, m 

A, 

A, power of displacement field 

power of the stress singularity 
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v Poisson’s ratio 

normal stress in y-direction, GPa uY 

TREATHENT OF SINGUIARITIES IN CRACKED BODIES 

In this section, the mathematical forms of 2 D  and 3 D  singular stress 

fields and the corresponding displacement fields near a crack front are 

discussed. 

Two-Dimensional Problems 

The classical solution to the 2 D  crack problems was given by 

Westergaard [17] and Williams [ 1 8 ] .  The near-field stress singularity w a s  

found to be of the square-root-r type, where r is the radius vector 

measured from the crack tip. The near-field stresses and displacements can 

be expressed in a variable separable form, in terms of  polar coordinates r 

and 8, as 

u = A ( B ) . r  XU 

and 

v = B ( 8 )  rxv 

with A, = -0.5 and A, = 0.5. The terms A and B are functions of  0 

only. This type of stress singularity is referred to as a polar 

singularity. 

Three -Dimensional Problems 

For 3 D  crack problems, two forms of singularities have been postulated: 

the cylindrical singularity, which is an extension of the 2 D  polar 
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singularity to 3D problems, and the vertex singularity, which is assumed to 

exist at the intersection of the crack front and the free surface [ 4 - 7 1 .  

This section discusses these two singularities. 

Cylindrical sinm1aritv.- This is a direct extension of the 2D polar 

singularity of near-field stresses along the crack front. 

the cylindrical coordinate system r, 8 ,  z with the crack front along the 

z-axis. The near-field stresses and displacements at a point P are 

Figure 2 shows 

assumed to be 

u = A 0 ( 8 , z )  rAu 

v = B 0 ( e , z )  rAv 

(1) 
and 

( 2 )  

where A, is the power of stress singularity and A, is the power of 

displacement field. A, and Bo are functions of only B and z .  Because 

a cylindrical coordinate system with the crack front as the z-axis is used 

in Eqs. 1 and 2, this singularity is termed as a cylindrical singularity. 

If A, and A, are independent of 6' for all values of z and 

A, - A, - 1, then Eqs. 1 and 2 are valid for the complete crack front. 

1 and 2 reduce to classical square-root singularity if and 

A, = 0.5. However, these equations cannot be valid at the free surface 

z = t/2 ( 3 1 .  

Eqs. 

A, = -0 .5  

Vertex sinnu1arity.- A s  previously explained, Benthem postulated the 

vertex singularity at the intersection of the crack front and the free 

surface, point Q in Figure 2, in the form of 

and 

v = F(8,d) RAv ( 4 )  

where R is the distance between the vertex point Q and the point P 
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The terms E and F are independent of R and functions of 0 and q5 

only. The exponents X u  and Xv are constants and are functions of only 

Poisson’s ratio. Furthermore, E q s .  3 and 4 assume that the separation of  

variables is valid; hence, A, = Xv - 1. 

Both the cylindrical and vertex forms of the singularities are based on 

the fundamental assumption that the separation of space variables is 

applicable to the stress and displacement fields near the crack front. 

However, the validity of this assumption has not been proven. In the next 

I 

section, a new look at the 3D problem based on superposition is used to 

hypothesize the singular stress fields. 

Superposition Analysis 

I The complete stress and displacement fields in a linear elastic cracked 

body, for example, the M-T specimen, can be hypothesized to be the sum of 

two solutions: a plane-strain solution and a 3D solution where surface 

tractions are prescribed on the z = ?t/2 planes, as shown in Figure 3. 

The plane-strain solution requires the displacements w to be zero on the 

z = ?t/2 planes. This constraint produces tractions uz on these planes. 

Therefore, the negative of these surface tractions need to be imposed on the 

second problem (Fig. 3c) to satisfy the stress-free conditions on the 

z = +t/2 planes in the original 3D problem. For convenience of 

presentation, the second problem is referred to as the residual problem. 

This superposition analysis is schematically shown in Figure 3 .  Thus, the 

near-field stress for the original 3D problem can be expressed as 

The first term is the solution to the plane-strain problem, with the 
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classical square-root-r singularity and the coefficient Co is function of 

only 6' and not of z. The second term is a solution to the residual 

problem, which could a l s o  havt. a singular field w i t h  a yowcr d i f f e r e n t  froin 

-0.5 [3]. Therefore, a 3D cracked body, in general, can have two singular 

stress fields. Since the residual problem is also a 3D problem, its 

solution can also have two singular stress fields: a square-root singularity 

and an unknown singular field. Therefore, T'(r,B,z) is expressed as 

I 11 

T (r,B,z) = C 0 ( B , z )  r + T (r,o,z) ( 6 )  

Combining Eqs. 5 and 6 ,  the general solution to the near-field stresses for 

the original 3D cracked body is 

u = C 0 ( 8 , z )  r -'I2 + T(r,B,z) ( 7 )  

The first term in the Eq. 5 is the square-root singular field and the second 

term is the general singularity, which needs to be established. The term 

C o ,  which is a function of the polar angle 6' and the distance from the 

mid-plane z ,  defines the magnitude of the square-root singular stress 

field. For very thick specimens the interior develops a plane strain stress 

state and, hence, in the interior only the square-root singular stress field 

exists. Several investigators, including the present analysis, [14-161 have 

found in 3D analyses of  cracked bodies that plane-strain constraints exist 

for most of the crack front. Therefore, T(r,B,z) must become zero in the 

interior and non-zero away from the mid-plane region. 

The second term T(r,B,z) can be expressed either as a cylindrical or 

vertex singularity using cylindrical or spherical coordinate system, 

respectively. Hence, Eq. 7 is rewritten as 

CT = C ( 0 , ~ )  r -'I2 + D,(O,z) rxu 
0 
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or 

u = C 0 (B,z) r -'I2 + Eo(S,4) RAo (9)  
Here A, is the unknown power of singularity and the term Do is a 

function of b' and z and Eo is function of b' and 4. At the free 

surface ( z  = +t/2), R = r; hence Eq. 9 reduces to Eq. 8. Eqs. 8 and 9 

assume that a variable separable form is valid. If this assumption is not 

valid, then the finite element results would show a dependency on 0 .  At 

z = t/2, the value of A, must be other than -0.5 to satisfy the 

compatibility requirement suggested by Sih 131. It is clear from Eqs. 8 and 

9 that the plane strain solution is a special case of the 3D solution 

wherein the coefficient Do (or Eo) is zero and Co is constant for all 

values of  z .  

The displacement field for the cracked body can be expressed, 

similarly, in a two-term form as 

v = F ( B , z )  r + Go(B,z) rAv 

+ Ho(S,4) Rxv 

0 

or 

v = F ( 0 , z )  r 
0 

The terms Fo and Go are functions of B and z ;  and Ho is a function 

of 8 and 4 .  The exponent A, is the power of  the displacement field. 

A s  already explained, in the interior of the crack front, C, and Fo are 

dominant and the other coefficients are either zero or have negligible 

influence. But in the neighborhood of the free surface ( z  = t/2), the 

coefficients of the second singularity become dominant. Because strains 

(and, hence, stresses) are the first order derivatives of the displacements, 

for the disp acements in Eqs. 10 and 11 t o  represent the stress field in 

Eqs. 8 and 9 A, should be equal to A, -1. If A, is not equal to 
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Xv - 1, then the variable separable form is not valid in Eqs. 8-11. 

Further, if Eqs. 8 and 9 are the correct form for stresses then Eqs. 10 and 

11 are not correct for displacements and vice versa. 

Evaluation of Second Singular Stress Field 

Using stresses and displacements from an accurate numerical solution 

(such as a finite-element analysis), the coefficients in Eqs. 8-11 can, in 

principle, be evaluated. The coefficients Co, Do, E,, and the exponent 

X u  from the stress data and Fo, Go, Ho and Xv from the displacement 

data are to be evaluated along the crack front. The problem reduces to the 

evaluation of two constants and an exponent (A, or A,) for each of the 

Eqs. 8-11. Several numerical procedures were attempted but none proved 

reliable to evaluate two unknown coefficients and an unknown exponent in 

Eqs. 8-11, However, reliable numerical procedures are available to evaluate 

one constant and one exponent. Therefore, Eqs. 8-11 were examined to reduce 

the problem to one coefficient and one unknown exponent. Thus, the stress 

and displacement are represented by 

u = c rA, b and 

V = G  b r A v  ( 1 3 )  

For the purpose of discussion, the crack front is considered to be 

divided into three regions: the interior region, the boundary-layer region, 

and the free surface location (region). The interior region is the region 

where the stress field is dominated by the square-root singularity (the 

first term in Eqs. 8-11). The boundary-layer region is the region near the 

free surface and beyond the square-root singularity dominant region. The 
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free surface ( z  = 0.5t) is a special location in the boundary-layer region. 

Here, Eq. 9 reduces to Eq. 8 and Eq. 11 reduces to Eq. 10 because 

R = r. A s  mentioned previously, in the interior region, the contribution of 

the second singularity to total stresses and displacements is nearly zero. 

In this region Eqs. 12 and 1 3  are valid approximations and, therefore, a fit 

to the finite-element results should give A, = -0.5, A, = 0.5, and 

establish the square-root singular region. Because the stresses and 

displacements in the interior are already known to be square-root singular, 

only the singularity field in the boundary-layer region needs to be 

analyzed. The coefficients in Eqs. 8 and 9 have the following three 

possible conditions in the boundary-layer region and at the free surface: 

a. Co(S,z) is  dominant and constant all along the crack front. 

That is, Co(B,z) = Co(B,O) for 0 I z I t/2. 

b. Co(8,z) is dominant in the interior of the crack front, 

varies along the z-axis, and, at the free surface (z = t/2), 

Co is zero or very small compared to the second term in 

Eqs. 8 and 9 .  

c. is of the same order of magnitude as D o d o  or EoRA. 

If the condition (a) is true, then the constants Co and Fo can be 

evaluated using stress data at the midplane (z = 0). Eqs. 8 and 9 can now 

be rewritten as 

= D rx, 
0 

u - co(6,0) r 

and 

Similarly, for displacements 

v - F ( 6 , z )  r = G rxv 
0 0 

i2 



and 

(15 )  v - F ( 0 , ~ )  r 1 1 2  = [{ K'V 
0 0 

The left-hand-side values of E q s .  14 and 15 are known for various 

values of r and hence a fit can be made to determine the constants D o ,  

E o ,  Go, and Ho and the exponents A, and A,. If the computed A, and 

A, are same f o r  various angles b' and satisfy the condition A, = A, - 1, 

then the variable separable form is valid. Otherwise, either the condition 

(a) or the variable separable form for the second singularity is not valid. 

If the condition (b) is true, then, at the free surface ( z  = t/2), 

E q s .  8 and 10 reduce to Eqs.  12 and 13, respectively, as 

, = D  rX, 
0 

and 

v = ~  r A v  
0 

The exponents A, and A, can easily be calculated from finite- 

element stresses and displacements using E q s .  16 and 17, respectively. If 

A, and A, show independence with 6, and A, = A, - 1, then the variable 

separable form and condition (b) are valid. Otherwise, either condition (b) 

or the variable separable form is not valid. Within the boundary-layer 

region, E q s .  1 6  and 17 are not correct representations of stresses 

( E q s .  8-9) and displacements ( E q s .  10-11) because both terms are dominant. 

Therefore, even if A, and A, are independent of 8 at z = t/2, they 

will show dependence on b' at z < t/2. If such a condition exists, then 

the condition (b) is still valid. 

If the condition (c) is true, the stresses and displacements cannot be 

represented in a one-term form as in E q s .  1 2 - 1 3 .  Therefore, a numerical 
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fit to E q s .  12-13 will yield meaningless values for A, and A,. A l s o ,  

even if the variable separable form for stresses and displacements is valid, 

A, and A, would show dependence on 6'. 

In summary, two fits in the form of E q s .  14-17 are needed to determine 

the form of the singular stress in the boundary-layer region and free- 

surface location. If a fit to E q s .  1 4  and 1 5  produces A, and A, values 

independent of 0 and A, = A, -1, then condition (a) is valid and the 

second singularity is given by A,. If a fit to E q s .  16-17 produces A, 

I and A, values independent of 8 ,  satisfies the condition A, = A, - 1 at 

z = t/2, and is dependent on 6' within the boundary-layer region ( z  < t/2), 

then condition (b) is valid and the second singularity is given by A, of 

E q .  1 6 .  If A, and A, are dependent on 0 at z = t/2 and in the 

boundary-layer region, then condition (c) is valid. Then A, and A, can 

only be determined by a fit to two coefficients and one exponent. 
I 

I 

FINITE-ELEMENT ANALYSIS 

Specimen Configuration 

Figure 1 shows a middle-crack tension (M-T) specimen with uniform 

applied stress S and a bend specimen with a line loading P. All results 

I 

I presented, unless otherwise stated, refer to S - 1 N/mm2 or P - 1 N/mm. 
I 
I 

The values of the geometric parameters defined in the Figure 1 are 

W = 50 mm, H = 200 mm, and a = 25 mm. Two specimen thicknesses (t), 25 mm 

and 50 mm, were considered for the M-T specimen and one thickness 25 mm was 
~ 

used for the bend specimen. 

isotropic with an elastic modulus E = 70 GPa and a Poisson's ratio 

v = 0.3. For the M-T specimen with a/t = 1 several values with u ranging 

The material was assumed to be homogeneous and 
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from 0.0 to 0 . 4 5  were used. Exploiting the symmetry in the specimen 

geometry and loading, only one-eighth of the M-T specimen and one-fourth of 

the bend specimen was modeled in the finite-element analysis. 

Finite-Element Model 

Figure 4 shows the finite-element idealization of one-eighth of the M-T 

or one-fourth of the bend specimen. Twenty-node isoparametric elements were 

used every where except along the crack front, where pentahedron elements 

(15 nodes) were used. The insert in the figure describes idealization near 

the crack front in the x-y plane. In pentahedron (collapsed) elements, the 

intermediate nodes were retained at the mid-sides of the element edges. 

Note that a square-root singularity of the stress and displacement fields 

would have been reproduced if the mid-side nodes were moved to the quarter 

points [19-211. This was not done since it would have biased the stress 

field singularity at the crack front. Instead, the singularity was 

calculated from the computed stresses ahead of the crack front. 

The 3D finite-element model was developed using a 2D idealization of 

the z = 0 plane and then translating that plane in the z-direction. 

Adequacy of the inplane (x-y) and through-the-thickness (z-direction) 

modeling was established by a 2 D  plane-strain analysis and a convergence 

study of the 3D models. Details of the convergence study are presented in 

reference 12. The model selected for the present study had nine layers of 

unequal thickness with 5,348 nodes; 1,116 elements; and 16,044 degrees of 

freedom. The layer thickness near the free surface was 0.005 mm and the 

smallest element size in 

4 ) .  The mesh refinement 

the x-y plane was also 0.005 mm (see insert in Fig. 

increased equally in x-, y - ,  and z-directions 
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towards the vertex point Q. A local least-square smoothing procedure [20]  

was used to extrapolate the Gauss point stresses to the element nodes. 

~ 

RESULTS AND DISCUSSION 

In this section, a plane-strain analysis of the M-T specimen was 

performed to reproduce some of the established results in 2D crack problems. 

The nodal displacements and stresses near the crack front were used to 

evaluate power of singularity through a log-log least square regression 

analysis. Details of the regression analysis are presented in reference 12. 

Second, 3D stress and displacement fields near the crack front for the M-T 

specimen are presented. The power of singularities along the crack front of 

M-T and bend specimens are then evaluated. Finally, the effect of Poisson's 

ratio on the power of the singularity distribution and the specimen 

configuration on the G distribution are assessed. 

Two-Dimensional Plane-Strain Analysis 

The plane-strain analysis will verify that the finite element model 

can reproduce the classical 2D singular stress and displacement fields near 

the crack tip. The plane-strain results were obtained from the same 3D, FE 

model shown in the Figure 4 by specifying 

mode I stress ay and the opening displacement v were used to calculate 

the exponents in the stress and displacement equations. 

singularity A, was calculated by fitting a straight line to l o g  r versus 

w - 0 on z - t/2 plane. The 

The power of 

l o g  oy results. 

intervals of 22.5' for 0' I 6 5135' .  

procedure was also used f o r  the v displacemcnt to evaluate the exponent 

The procedure was repeated along radial lines at 

A similar straight-line-fit 
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A,. 22 .5 '  5 6' I 

180° in intervals of 2 2 . 5 O .  A s  shown in figure 5 ,  consistent values of A, 

of about -0 .497  were obtained for Uo I 6' 5 67.5O. The A, from this fit 

w a s  0.505 at 0 = 180° and varied less than 1% for 6' between 1 1 2 . 5 '  and 

1 8 0 O .  

The procedure was repeated along each of the radial lines 

The fit to the ay stresses for 6' 2 90' gave A, values that 

deviated by more than 2% from the classical value of -0.5. Similarly, for 

6' 5 90°, the fit to the v-displacements gave A, values that deviated by 

more than 2% from 0 . 5 .  The variations in the A, values for 6' 1 90' (Av 

values for 6' S 90') is expected. Since the magnitude of ay and v 

decreases and eventually approaches zero at 

respectively. 

only in the regions where ay and v are non-zero. For this reason, these 

values are not shown in Figure 6 .  

6' = 180° and 6' = O o ,  

Hence, the log-log fit is expected to yield accurate results 

Figure 5 shows that the exponents A, and A, are independent of  the 

polar angle 6' and that they satisfy the condition A, = A, - 1. Thus, the 

plane-strain finite element model accurately reproduced the variable 

separable form of the 2D singular field solution at the crack tip. 

The 2D analysis suggests that if the exponents A, and A, are 

invariant with respect to 

identical slopes. Therefore, the invariance of A, and A, with respect 

to 6' will be evaluated by comparing the values at 6' = 0" and 45O for A, 

and at 6' = 180' and 135O for A,. If the exponents are nearly identical 

then the invariance with respect to B is assumed to exist. The 

invariance suggests that a variable separable form for stresses and 

displacement fields is valid in polar coordinates. 

8, then the log-log fits would yield nearly 
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Stress and Displacement Distributions in the H-T Specimen 

Figure 6 shows the distribution of stress ay ahead of the crack front 

at various z = constant planes. Note the log-log scale in the figure. The 

stress is normalized by the remote stress S at y = 2 H/2. The figure 

shows that both the slope and magnitude of 

0 I z/t I 0 . 4  

together, hence, these results are not shown in the figure). For 

z/t > 0 . 4 ,  the slope appeared to change and the magnitude of the stress 

shows a drop compared to the interior (z/t = 0) values. At the free 

boundary z = t/2, the slope is smaller than at the mid-plane ( z  = 0). The 

variation of the slope (power of singularity A,) in z-direction will be 

discussed later. 

oy are nearly identical for 

(results between z/t = 0 . 4  and 0.4832 were clustered 

Figure 7 shows the distribution of opening displacement v behind the 

crack front at various z = constant planes. Note that S = 57 N/mm2 for 

the displacement plot. The slope of displacement curves increased towards 

the free surface. Furthermore, the opening displacement decreased as the 

free surface is approached [ 1 4 - 1 6 1 .  The variation of the slope (exponent 

A,) in z-direction will be discussed later. 

Comparison of v-displacement at z = 0 and z = t/2 at the 

centerplane (x = -25 mm) of the specimen showed that the free surface 

(z = t/2) displacement is about 4% higher than the mid plane (z = 0) 

displacement. This trend is contrary to the distribution near the crack 

front. However, for the bend specimen, the v-displacement was nearly 

constant (less than 0.2%) at x = -25 mm. (These results are not shown in 

the figure.) 



Singular S t r e s s  F i e l d s  in  the H-T Specimen 

A s  previously mentioned, two types of singular stress fields (Eqs. 8 

and 9 )  and displacement fields ( E q s .  10 and 11) are possible for R 3 D  

cracked body. Furthermore, three regions along the crack front (interior, 

boundary layer, and free surface) and three possible solutions to the near- 

field singular stresses were identified. Here, the possibility of 

conditions (a) and (b) are assessed. If neither (a) nor (b) is possible 

then the condition (c) defines the near-field singular stresses in a 3D 

cracked body. 

Condition (a).- In this condition, the coefficient Co of the square- 

root singularity in Eqs. 8 and 9 is constant all along the crack front. 

this is true, then a fit of Eqs. 14 and 15 to the finite-element stresses 

If 

and displacements at z = t/2 should define the second singular field. The 

free surface stresses and displacements were subtracted from their 

respective mid-plane values. 

used to evaluate A, and Xv using a log-log regression analysis at 

The resulting stresses and displacements were 

various 6' = constant lines. Table 1 shows computed values of A, (at 

0 - 0' and 45') and A, (at 0 1 3 5 O  and 180°) are dependent on 6' and 

that A, i s  not equal to A, - 1. Dependence of A, and A, on 0 s h o w s  

that either this condition or the variable separable form for the residual 

stresses and displacements is not valid. 

Condition (b).- In this definition, the coefficient of the square-root 

singularity is dominant in the interior of the crack front and is zero or 

negligibly small at the free surface. A s  mentioned previously, t h e  

coefficient of the second singularity is negligible or zero in the interior 

of the crack front and becomes dominant at the free surface. 
0 

Therefore, a 

1 9  



simplified form of Eqs. 12-13 is a valid representation for all z, except 

in the boundary-layer region. This type of fit should also define the 

region of dominance of each of the terms in Eqs. 8-11. First, to verify the 

validity of separation of variables, a log-log least square regression was 

performed at the midplane (z = 0) and at the free surface (z=t/2) for 

0 = Oo and 45O for stress ay and for 0 = 135' and 180' for v- 

displacement. Table 2 presents A, and A, at the mid-plane and at the 

free surface. At the z = 0 plane, the power of the singularity A, is 

nearly identical to the 2D classical value of - 0 . 5  and is same for 0 = 0' 

and 45'. The corresponding slope of the v-displacement A, is 0.5 and is 

I also independent of 0 .  These results satisfy the relationship A, = A, - 1 

both at the midplane and the free surface. Therefore, separation of 

variables is valid both at the midplane and at the free surface of the 

specimen. At the free surface, the power of the singularity is weaker 

(A, = -0 .451)  than the square-root singularity and agrees very well with 

Benthem's solution [ 4 , 5 ] .  Actually, Benthem assumed separation of variables 

and proved that the vertex singularity exists at the vertex point Q. 

Therefore, proving the validity of variable separable form for stress and 

displacements shows the possible existence of a vertex singularity at the 

free surface. However, at the free surface, R = r, a vertex singularity 

reduces to a cylindrical singularity. Therefore, one would argue that the 

second singularity could be a cylindrical singularity. 

i 

, 

Table 3 compares A, calculated at 6 = 0' and A, - 1 calculated at 
I 

6 = 180° with Benthem's solutions [ 4 , 5 ]  for various Poisson's ratios 

( V  = 0.0 to 0 . 4 5 ) .  The present values of A, and A, - 1 agreed very well 

with Benthem's vertex singularity results. Therefore, the second 

I :.! 0 



singularity may be a vertex singularity and the coefficients of the square- 

root singular term (the first term in Eqs. 8-11) at the f r ee  surface is 

negligibly small or identically equal to zero compared to the second term. 

Figure 8 shows the variation of A, and A, along the crack front. 

Both A, and A, were evaluated by fitting Eqs. 1 2  and 1 3  to the finite- 

element stresses and displacements, respectively. In this figure only the 

results for z/t > 0 . 4 5  are shown. In the region 0 I z/t I 0 . 4 8 ,  both A, 

and A, are constant and equal to the classical 2D values (A, = -0.5 and 

A, = 0 . 5 ) .  This indicates that over the interior (96% of the crack front), 

the power of singularity is -0.5 and the influence o f  the second singularity 

is negligibly small or zero. Furthermore, at z/t = 0 . 4 8 3 2  A, calculated 

at 

significant dependency on 8. Both A, and A, start deviating from the 

2D values at z/t > 0.48 and become dependent on B 

This indicates that both singular fields in Eqs. 8-11 are becoming equally 

dominant and, hence, the one-term fit based on Eqs. 1 2  and 1 3  is not valid 

in this region. Therefore, the question of the type of the second 

singularity (vertex or cylindrical) is still not completely resolved unless 

a reliable procedure to determine two constants and an exponent is 

available. 

8 = Oo and 45' and A, at B = 135O and 180° did not show any 

(except at z - t/2). 

In summary, a 3D cracked body has two singularities: a square-root 

cylindrical singularity and a vertex or cylindrical singularity. A 

comparison of the present results with Benthem [ 4 , 5 ]  and Bazant and 

Estenssoro [ 6 , 7 ]  results appears to show that the second singularity is  a 

vertex singularity. The square-root singularity dominates in the middle 96% 

of the crack front and its coefficient is nearly zero at the free surface. 
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The influence of the second singularity becomes dominant near the free- 

surface region (0 .48  s z/t 5 0 . 5 ) .  

Effect of Poisson's Ratio on Boundary-Layer Thickness 

Figure 9 shows the distribution of A, calculated by fitting E q .  12 to 

the finite-element results for Poisson's ratios of 0.0, 0.3, 0 . 4 ,  and 0 . 4 5 .  

For Poisson ratio equal to 0.0, the constitutive equations decouple and the 

3D problem reduces to that of a plane-stress case with the result that 

remains constant and equal to -0 .5  for all z. Therefore the boundary-layer 

length is zero. For Poisson's ratio greater than 0.0, the boundary-layer 

length increased with increased values of v .  If one defines the boundary- 

layer length as the length over which X u  differed by more than 2% from the 

2D classical value of - 0 . 5 ,  then the boundary-layer lengths are 2 8 ,  4 % ,  and 

5 %  of specimen thickness for v = 0 . 3 ,  0 . 4 ,  and 0 . 4 5 ,  respectively. 

X u  

Effect of Specimen Configuration on Boundary Layer 

Figure 10 shows the X u  distribution for two M-T specimen thicknesses 

(t = a and t = 2a, where a = 25 mm) and for a bend specimen (t = a) for 

Poisson's ratio of 0.3. The figure shows nearly identical X u -  

distributions for all three specimens. At the free surface (z/t = 0 . 5 ) ,  

A, for the M-T specimens with a/t = 1.0 and 0.5 are, respectively, -0.451 

and -0.455 and, for the bend specimen, is - 0 . 4 6 1  (which is about 2% lower 

than for M-T specimens). Furthermore, the boundary layer length for all 

three specimens is nearly same ( 0 . 4 8  5 z/t 5 0 . 5 ) .  Therefore, the specimen 

configuration and the loading has no effect on the X u  distribution and the 

boundary-layer length. 
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Strain-Energy-Release Rate Distribution for Three Specimens 

This section will show that the drop in G (or K )  near the free 

surface is not only related, ‘1s hypothesized by some investigators [ 6 - 8 1 ,  to 

the non-square-root singularity of the stress field, but is also related to 

the specimen configuration and loading. Figure 11 shows the normalized G -  

distribution along the crack front for the two M-T specimens (a/t = 1 and 

0.5) and the bend specimen. The G-distribution was calculated using the 

three-dimensional virtual crack closure technique of reference 13.  The G- 

values were norma ized by their respective plane-strain values (GpE). 

GpE-values for the M-T and bend specimens are, respectively, 1.462 x 

N/mm f o r  S = 1 N/mm and 0.1148 x 

value of G at z = 0 (mid-plane) for the M-T specimens decreased with 

increasing thickness (a/t from 1.0 to 0.5). This trend indicates, as one 

would expect, that for smaller value of a/t, the value of G at z = 0 

approaches the plane-strain value (1.462 x N/mm). The curve of  the G- 

distribution for the M-T specimens is nearly flat in the interior 

(z/t 5 0 . 4 )  and shows a steep gradient near the free surface. 

starts at z/t = 0 . 4  for a/t = 1.0, and at 0 . 4 3  for a/t = 0.5. The curve 

for bend specimen shows a continuous, but small, gradient from the mid-plane 

( z  = 0), towards the free surface. Note that, for all three specimens, the 

boundary layer (the region over which A, deviates from the classical 

value of 0.5) is between 0 . 4 8  I z/t 5 0.5. Therefore, the variation of G 

in the region of 0 I z/t 5 0 .48  

root singular stress field. Instead, the variation is also due to the 

specimen configuration and loading. 

The 

N/mm for P - 1 N/mm. The normalized 

The gradient 

cannot be attributed only to a non-square 
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Strain-Energy-Release Rate at 
Intersection of Crack Front and Free Surface 

In this section, the strain-energy-release rate at the intersection of 

the crack front and the free surface is evaluated using the virtual crack 

closure technique[l3]. At the free surface ( z  = t/2), R = r and E q s .  8 

and 9 reduce to Eqs. 10 and 11, respectively. For self-similar crack 

growth, Irwin's crack closure integral [ 1 9 ]  is used to calculate the strain- 

energy-release rate. The mode I strain-energy-release rate G is written in 

terms of  stress uy and displacement v as 

A 
(r,O,t/2).v(A-r,O,t/2) dr ) (18) 

A+O 

Substituting uy and v from E q s .  8 and 10, respectively, and using 

condition (b), i.e., Xv = X u  + 1 one has 

A 
1 1  dr 1 -'I2+ D rXu ) (Fo(A-r)Ii2+ G (A-r) (X,+1) 

0 0 
G - lim 

A+O 

I The E q .  19 is expanded and rewritten as 

G = lim r-1/2(A-r)1'2 + Co Go r - 1/2 (A-r) (xu+1) 
A 

A+O 

+ D F rXu (A-r)1/2+ D G rXu (A-r)(Xu+l) ] dr 
0 0  0 0  
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The integral of E q .  20 is written a s  

Where 

G - lim [(~/2) CoFo + CoGoIl + DoFo12 + DoGo13] ( 2 1 )  - 

0- 

A 
I * =  1 J rAo (A-r)'l2 dr 

0 

and 

0 

The integrals 11,  12, and I3 are functions of A and A,. For 

Poisson's ratios greater than zero, the value of A, is greater than 

(algebraically) -0.5. Using this condition and taking the limit, the 

integrals 11, 12, and I3 approach zero. Hence Eq. 21 reduces to 

As previously shown, C, and F, are zero at the free surface. This 

A zero value of  strain-energy-release rate in leads to zero value for G. 

the presence of a stress singularity appears contradictory. However, it 

simply means that a crack front normal to the free surface cannot grow 

self-similarly, as was assumed in the above discussion. Alternatively, a 

zero value of G at z = t/2 makes the crack front stationary at the 

vertex point Q while the crack grows in the interior. Such crack-growth 

behavior has been observed in many experimental studies. Crack growth in 
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the interior only would cause the crack front to curve and change the angle 

of intersection between the crack front and the free surface to more than 

90°, which would in turn affect the singularity field. The change in 

intersection angle can influence A, and would probably increase the 

magnitude of Co and Fo in Eq. 22. Thus, G would have a nonzero value 

at the free surface. In fact, a condition may be reached such that the G 

at the free surface may become equal to the interior value. The angle at 

which this might occur should depend on the Poisson's ratio of the material 

since A, depends on Poisson's ratio (see Table 3 )  and the specimen type or 

loading. 

CONCLUDING Rww(s 

Three dimensional finite-element analyses of middle-crack tension (M-T) 

and bend specimens were performed. Twenty-node, isoparametric elements were 

used in the model. The displacements and stresses from the analysis were 

used to estimate the power of the singularities along the crack front. A 

log-log regression analysis was used to calculate the power of the stress 

singularity. The finite-element model and the regression analysis procedure 

were verified by analyzing a two-dimensional (2D) plane-strain problem. The 

calculated power of the singularity of the stress field agreed very well 

with the classical solution. The following conclusions were made from this 

study . 

In finite-sized three-dimensional cracked bodies, two singularities 

exist along the crack front and the near-field stresses have the form 

a = C o r  -ll2 + Do RAa. 

power of - 1 / 2 ,  which is same as the classical 2D value. The second term may 

The first term is a cylindrical singularity with a 
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be a vertex or cylindrical singularity. Comparison of the present results 

with the literature suggests the possibility that the second singularity is 

a vertex singularity with the power A, and located at the intersection of 

crack front and the free surface. For a Poisson's ratio of 0.3, the 

cylindrical singularity dominates over 96% of the interior of the crack 

front while the second singularity dominates at the free surface. Within 

the region 

is referred to as the boundary layer. 

singularity A, at the free surface agreed very well with Benthem's results 

for all Poisson's ratios. 

0.48 I z/t < 0 . 5 ,  both singularities are present and the region 

The calculated power of the vertex 

The separation of variables assumption in the stress and displacement 

fields was found to be valid at the free surface and in the middle 96% of 

the crack front for v = 0.3. Hence, this assumption may be valid in the 

boundary-layer region as well. 

found to depend on Poisson's ratio and not on the specimen configuration or 

loading. The boundary layer is zero for v = 0.0 and 2%, 4 % ,  and 5 %  of the 

specimen thickness for v = 0.3, 0 . 4 ,  and 0 . 4 5 ,  respectively. 

The thickness of the boundary layer was 

Because two singular stress fields exist within the boundary-layer 

region, the strain-energy-release rate G is an appropriate parameter to 

define the severity of the crack all along the crack front. 

configurations were analyzed; the G-distribution f o r  all three specimens 

showed steep gradients near the free surface. The drop in G near the free 

surface is not only due to the non-square root singularity but also due to 

the specimen configuration and loading. The region where the drop in G 

occurred was 10% and 7% of the crack f r o n t  (measured from the free surface), 

for the M-T specimens of a/t = 1.0 and 0.5, respectively. For the bend 

Three specimen 
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specimen, t he  G curve had a continuous gradien t  a l l  a long the  crack f r o n t  

and s t eep  g r a d i e n t  near  t he  f r e e  su r face .  G where the  crack . f ront  

i n t e r s e c t s  t he  f r e e  s u r f a c e  a t  an angle of 90" was found t o  be zero .  

Therefore ,  c rack  growth cannot occur a t  the  f r e e  s u r f a c e  i f  t he  crack f r o n t  

is  normal t o  the  f r e e  su r face .  For crack growth a t  the  s u r f a c e ,  t h e  

i n t e r s e c t i o n  angle  should be g r e a t e r  than 90' and the  angle  a t  which crack 

growth w i l l  occur depends on Poisson 's  r a t i o .  
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Table 1: Variation of A, and A, in 0-direction, at the free-surface 
for condition (a). 

I -  
0 -0.534 - - - -  

45 - 0 . 5 9 0  - - - -  

0.330 135 

180 - - - -  0.300 

- - - -  

Table 2: Power of stress (A,) and displacement (A,) fields at the mid- 
plane and at free surface of a M-T Specimen ( v  = 0.3). 

Mid-plane ( z  = 0 )  Free Surface ( z  - t/2) 
e 

Deg . 1, A, A, AV 

0 . 0  -0.495 - _ _ _  -0.451 - _ - -  

4 5 . 0  -0.494 - - - -  -0.442 - - - -  

0 . 5 5 6  

0.505 - - - -  0.548 

135.0 - - - -  0.510 - - - -  

180.0 - - - -  
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Table 3 :  Comparison of present results with Benthem’s 
solution at free surface. 

Poisson’s Benthem [ 4,5  ] Present Results 
ratio, v A, A, A, - 1 

0 . 0  

0.30 

0.40 

0 . 4 5  

0 . 5 0  

-0.500 

-0.452 

-0.414 

- - - -  

- 0 . 3 3 2  

-0.497 -0.497 

-0.451 -0.452 

-0.407 -0.417 

-0.356 - 0 . 3 9 1  

- - - -  - _ _ -  
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